33,511 research outputs found

    Computer-controlled vibration testing

    Get PDF
    System features quickly achieved steady state, increased accuracy of spectrum definition, and true Gaussian amplitude distribution of resulting signals. Controlled shock-tests might also be tried with this system

    Quantifying scaling in the velocity field of the anisotropic turbulent solar wind

    Get PDF
    Solar wind turbulence is dominated by Alfvénic fluctuations with power spectral exponents that somewhat surprisingly evolve toward the Kolmogorov value of −5/3, that of hydrodynamic turbulence. We analyze in situ satellite observations at 1AU and show that the turbulence decomposes linearly into two coexistent components perpendicular and parallel to the local average magnetic field and determine their distinct intermittency independent scaling exponents. The first of these is consistent with recent predictions for anisotropic MHD turbulence and the second is closer to Kolmogorov-like scaling

    Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary

    Get PDF
    Vapour bubble collapse problems lacking spherical symmetry are solved here using a numerical method designed especially for these problems. Viscosity and compressibility in the liquid are neglected. Two specific cases of initially spherical bubbles collapsing near a plane solid wall were simulated: a bubble initially in contact with the wall, and a bubble initially half its radius from the wall at the closest point. It is shown that the bubble develops a jet directed towards the wall rather early in the collapse history. Free surface shapes and velocities are presented at various stages in the collapse. Velocities are scaled like (Δp/ρ)^½ where ρ is the density of the liquid and Δp is the constant difference between the ambient liquid pressure and the pressure in the cavity. For Δp/ρ=10^6cm^2/sec^2 ≈ 1 atm/density of water the jet had a speed of about 130m/sec in the first case and 170m/sec in the second when it struck the opposite side of the bubble. Such jet velocities are of a magnitude which can explain cavitation damage. The jet develops so early in the bubble collapse history that compressibility effects in the liquid and the vapour are not important

    Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary

    Get PDF
    Vapor bubble collapse problems lacking spherical symmetry are solved here using a numerical method designed especially for these problems. Viscosity and compressibility in the liquid are neglected. The method uses finite time steps and features an iterative technique for applying the boundary conditions at infinity directly to the liquid at a finite distance from the free surface. Two specific cases of initially spherical bubbles collapsing near a plane solid wall were simulated: a bubble initially in contact with the wall, and a bubble initially half its radius from the wall at the closest point. It is shown that the bubble develops a jet directed towards the wall rather early in the collapse history. Free surface shapes and velocities are presented at various stages in the collapse. Velocities are scaled like (Δp/ρ)^1/2 where ρ is the density of the liquid and Δp is the constant difference between the ambient liquid pressure and the pressure in the cavity. For Δp/ρ = 10^6 (cm/sec)^2 ~ 1 atm./density of water the jet had a speed of about 130 m/sec in the first case and 170 m/sec in the second when it struck the opposite side of the bubble. Such jet velocities are of a magnitude which can explain cavitation damage. The jet develops so early in the bubble collapse history that compressibility effects in the liquid and the vapor are not important

    OGSA first impressions: a case study re-engineering a scientific applicationwith the open grid services architecture

    Get PDF
    We present a case study of our experience re-engineeringa scientific application using the Open Grid Services Architecture(OGSA), a new specification for developing Gridapplications using web service technologies such as WSDLand SOAP. During the last decade, UCL?s Chemistry departmenthas developed a computational approach for predictingthe crystal structures of small molecules. However,each search involves running large iterations of computationallyexpensive calculations and currently takes a fewmonths to perform. Making use of early implementationsof the OGSA specification we have wrapped the Fortranbinaries into OGSI-compliant service interfaces to exposethe existing scientific application as a set of loosely coupledweb services. We show how the OGSA implementationfacilitates the distribution of such applications across alarge network, radically improving performance of the systemthrough parallel CPU capacity, coordinated resourcemanagement and automation of the computational process.We discuss the difficulties that we encountered turning Fortranexecutables into OGSA services and delivering a robust,scalable system. One unusual aspect of our approachis the way we transfer input and output data for the Fortrancodes. Instead of employing a file transfer service wetransform the XML encoded data in the SOAP message tonative file format, where possible using XSLT stylesheets.We also discuss a computational workflow service that enablesusers to distribute and manage parts of the computationalprocess across different clusters and administrativedomains. We examine how our experience re-engineeringthe polymorph prediction application led to this approachand to what extent our efforts have succeeded

    Solar cycle dependence of scaling in solar wind fluctuations

    Get PDF
    In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations
    corecore